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Abstract

The effects of NaCl salinity and CaCl, concentrations on growth, dry matter allocation and ion uptake
of sweet potato (lpomoea batatas [L.] Lam.) plants were examined. Responses of sweet potato to
salinity showed that plants growing in low Ca* exhibited severe growth reduction under salinity stress
of 140 mM NaCl. Growth was reduced by NaCl salinity, and differences in ion uptake were observed
between the plants receiving low and high concentrations of CaCl,. Relative growth rate (RGR) of
sweet potato was only slightly reduced by salinity in the early stages, with a large reduction occurring
in the later stages. Sweet potato had a higher dry matter allocation to its shoots as NaCl salinity
reduced root growth more than it did shoot growth. Salinity tolerance of sweet potato appears to be
associated with its ability to control rates of Na*, K* and Ca?* ion uptake and transport, in order to
maintain ionic adjustments within the plant tissues during salt stress. There appears to be a salt
tolerance mechanism operating in which, during salt stress, ionic adjustment within the plant tissues
of sweet potato cultivar is maintained by controlling the rates of ion uptake and transport.

Key words: [pomoea batatas, sweet potato, salinity, calcium chloride, Ca, K, Na, relative growth rate, dry matter

accumulation, ion uptake

Introduction

Salinity inhibits plant growth and interferes with uptake
and transport of essential nutrients (Greenway and
Munns, 1980), while calcium is important for proper
root development and for maintaining a balanced
nutrient ion uptake (Mengel and Kirkby, 1987). Plants
unable to cope with high concentrations of ions in the
external medium can do little to modify their ion content.
They may, however, transfer ions to the shoot, re-export
them to the medium through their roots, or redistribute
them to various organs and cell components (Hellebust,
1976). The ability to transport Ca’* to the shoot during
salt stress is considered by LaHaye and Epstein (1971)
to be an indication of salt tolerance.

It has been demonstrated that increasing levels of Ca**
in the external medium alleviates the adverse effects of
NaCl salinity on plant growth. Under NaCl stress, the
growth of potato was greatly improved by the addition
of Ca** (Bilski et al., 1988). Hyder and Greenway
(1965), in an earlier study, found that Ca** modified
the response of Hordeum vulgare plants to NaCl salinity.
However, NaCl reduced growth of plants much more at
low Ca** than at high Ca**. LaHaye and Epstein (1971)
reported that Ca’* added to the nutrient solution
modified the effects of NaCl salinity on bean plants.
Cramer et al. (1986) observed that Ca’* partly restored
ionic balance and growth to salt stressed cotton plants.

They also speculated that high Ca’?t protected the cell
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membranes from the negative effects of salinity. In their
evaluation of two wheat species differing in salinity
tolerance, Davenport et al. (1997) found that tolerant
wheat was more efficient in utilising Ca’* to inhibit Na
uptake than the salt-sensitive species.

In moderate concentrations, Ca** increased the rates of
ion accumulation within the roots and improved the
uptake of K* under NaCl salinity in cotton (Cramer et
al., 1987). Also in cotton plants, Ca*" was found to
exert its greatest influence on the selectivity of K* over
Na™ at the primary root tip (Zhong and Lauchli, 1994).
According to Epstein (1962), this high selectivity of K*
in the presence of Na™, in the uptake and transport
processes, is largely due to the presence of Ca** ions in
the external solution. In an earlier study, Epstein (1961)
demonstrated that Ca”* played a role in selective cation
transport by plant cells. Excessive amounts of Na* can
result in reduced uptake of K™ and Ca**, which are both
required for maintaining cellular selectivity and integrity.
Wyn Jones and Lunt (1967) have indicated the need of
Ca’* for the selective transport of K* across cellular
membranes. According to Lynch etal. (1987), Na* ions
compete with Ca’* for uptake and affect cellular levels
of Ca*", resulting in cell leakage of ions and loss of
membrane integrity. By increasing the level of Ca’* in
the saline solution, the competition between Ca’* and
Na* ions was reduced and cell membrane integrity was
restored (Cramer and Lauchli, 1986). Cramer et al.
(1987) showed that an adequate supply of Ca’* could
greatly reduce or prevent the uptake of Na™ into roots
of salt stressed cotton seedlings and its transport from
roots to shoots.

Low concentrations of Ca’* are used in plant cells for
cell signaling and are conducted by several different types
of Ca** channels, regulated by different mechanisms
(Schroeder and Thuleau, 1991). Plasma membrane Ca**
channels allow the influx of Ca** from the cell wall, while
Ca’* release channels, found within intracellular
organelles, release stored Ca’* into the cytoplasm. The
influx of Ca’* across the plasma membrane plays a major
role in Ca*" signalling, though the role the plasma
membrane plays in maintaining adequate levels of
cytoplasmic Ca* during inactive periods is not clearly
defined (Bush, 1995). Under salinity stress conditions,
an early response to Na* stress signals appears to be a
rapid increase in free cytosolic Ca’* in plants (Bush,

1995; Knight et al., 1997; Kiegle et al., 2000; Sanders
et al., 2002; Donaldson et al., 2004). Bressan et al.
(1998) proposed a model for salt stress signalling that
allows plants to sense the presence of excess Na* and
adjust to it by initiating a Ca’*-dependent response to
the salinity condition. Furthermore, researchers have
identified a genetic locus containing a mutant calcium-
binding protein, SOS3, with hypersensitivity to NaCl
(Zhu et al., 1998; Halfter et al., 2000; Shabala et al.,
2005).
hypersensitivity and expression of this trait was
suppressed by millimolar levels of Ca”* (Zhu etal., 1998).
Available literature indicates that in-depth studies on

Increased levels of Ca’?* nullified this

salinity stress in sweet potato are limited.

The objective of the study was to investigate the effects
of NaCl salinity and CaCl, concentrations on growth and
uptake and distribution of Na*, K* and Ca’* in sweet
potato. An examination of the effects of inorganic solutes
on Na* uptake might provide information on the ability
of this plant species to tolerate high NaCl stress
conditions.

Materials and Methods
Plant material and experimental design

A hydroponic system was set up in the glasshouse of the
Plant Science Laboratories at The University of Reading,
United Kingdom, using the sweet potato cultivar
‘Salyboro’. It consisted of an air pump attached to a
mainline of PVC tubing branching alternately at 0.2 m
intervals. Each branch was 1.0 m in length, with an
aerator attached to the exposed end. The 1.0 m branches
were immersed in 5 | plastic buckets containing the plants
supported in nutrient solution on polystyrene discs. The
polystyrene discs were 21.5 cm in diameter and 3.0 cm
thick. Four equally spaced holes of 2.5 cm diameter
were cut into the polystyrene discs. Plants were
supported within the holes in the discs with 1.5 cm thick
sponge bungs. The buckets were wrapped in aluminium
foil to reduce lighting, in an effort to minimise growth
of algae within the nutrient medium.

The composition of the nutrient solution (Wheeler et
al., 1990), excluding the Ca element, were as follows:
NH,NO, (7.5 mmol I'"), KH PO, (0.5 mmol I''), KNO,
(3.0 mmol I'), Mg(NO,),.6H,O (1.0 mmol 1),
Fe(EDTA)Na (60.0 mmol I''), H.BO, (19.0 mmol I'!),
MnSO,.4H O (3.7 mmol I''), ZnSO,.7H,0 (0.32 mmol
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1), CuSO,.5H,0 (0.13 mmol I""), and Na,MoO, (0.04

mmol I'").

Forty-day-old sweet potato plantlets were hardened off
for two weeks and then transferred to the polystyrene
discs supported in the plastic buckets filled with a
nutrient solution. The nutrient solutions were
continuously aerated and renewed every seven days.
Glasshouse temperature was maintained at approximately
20°C. Supplementary lighting was provided to maintain
a photoperiod of 16 h per day. The sweet potato
experiment was arranged in a completely randomised
design. Treatments consisted of all possible four CaCl /
NaCl combinations: 2.99 mM CaCl, without NaCl
(control), 15.0 mM CaCl, without NaCl (control), 2.99
mM CaCl, with 140 mM NaCl, or 15.0 mM CaCl, with
140 mM NaCl. Each CaCl/NaCl combination was
replicated four times and for each destructive harvest,
four plants were sampled for each treatment. Plants
were harvested destructively on days 0, 7, 14, 21 and
28 after exposure to the salt treatments.

Growth measurements

At each destructive harvest, the material was examined
for the following characteristics: plant height, number
of shoots, number of nodes, number of fully expanded
leaves, shoot fresh weight, root fresh weight, number of
roots, shoot height, number of shoots, number of nodes,
shoot dry weight, root dry weight, Na™, K*, Ca’* content
of leaves and Na*, K*, Ca** content of roots.

Na*, K* and Ca?*determination

Solute concentrations of plant tissues were determined
according to the standard procedures of the Biochemistry
Unit of the School of Plant Sciences Laboratories, The
University of Reading. Leaf, stem and root tissues were
analysed for Na*, K* and Ca’* contents. Plant material
was prepared for drying by lightly rinsing to remove
surface salts from roots, divided into shoots and roots,
and then weighed. After drying and weighing of the
plant material resulting from the experiment, four 0.5 g
leaf and root samples from each treatment were weighed
in a 50 ml beaker, to which was added 5 ml of
concentrated nitric acid. This procedure was done under
a fume cabinet. Initial digestion of the material took
about 5 minutes before placing the beaker on a hot plate.
After digestion of the material for about 5-10 minutes,
a further 10-15 minutes was required to boil off the

acid until about 1 ml was left in the beaker. After cooling
the contents, a small volume of distilled H O was added
to each beaker, and the contents filtered. Each sample
was then made up to a volume of 25 ml with distilled

H O. The Na™, K* and Ca’" contents were then
determined by flame photometry.

Calculations
Root to shoot ratio:

Root-shoot ratio is the ratio of root dry weight to shoot
dry weight
Relative growth rate, Net ion uptake and transport:

Relative growth rate (RGR) was calculated using
the formula:

RGR = (log W, -log W)/ (T, -T),
where W 1 and W, were weights of plant parts at harvest

times Tl and Tz'

The rates of net ion uptake (J) and transport (] )
were calculated as:

] =(Q,-Q)WR(T,-T),

J, = (Qs, -Qs )/WR(T, - T),
where Q and Q, were ion contents of the whole plants;
Qs, and Qs, were ion contents of the shoot at harvest
times T, and T ; WR was the average root weight between
times T and T, i.e.

WR = (WR, - WR )/log (WR /WR ),
where WR and WR, were root fresh weights at harvest
times T and T,.

Net uptake by root = J - J_

(above calculations taken from Storey, 1995)

Statistical analyses

Analysis of variance (ANOVA) was conducted on all
experimental results using SAS’s analytic procedures (SAS
Institute, Cary, NC, USA).

Results and Discussion

After 28 days of exposure to varying NaCl and CaC12
concentrations, treatment differences were apparent in
the response of the sweet potato cultivar ‘Salyboro’.
Visual symptoms on NaCl-stressed plants included the
shedding of leaves and necrotic lesions in the roots.
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Analyses of variance of the growth responses (Table 1)
showed that the growth interval (time) had a highly
significant effect on shoot fresh and dry weights, number
of roots and total dry weights. Only a few of these
characters were affected by NaCl salinity. There were
also significant interactions, most notably NaCl salinity
with CaCl, concentration, which affected several of the
growth responses.

Root dry matter production was reduced in the presence
of 140 mM NaCl (Fig. 1), although analysis of variance
results (Table 1) did not indicate significance. When 15
mM CaCl, was added to the nutrient solution, there was
some improvement on the adverse effects of NaCl on
leaf and root dry matter production. Root dry matter
production decreased for all treatments, with the
exception of the NaCl-stressed plants exposed to low
CaCl,. Root growth in this case was stimulated by the
stress conditions.

The NaCl-treated plants produced less total dry matter
at the end of the experimental period than did their
corresponding unstressed high and low CaCl, treated
plants. These effects are seen in Fig. 1. While there was
a slight reduction in shoot RGR with the addition of
140 mM NaCl to the nutrient solution (Table 2), a more
drastic reduction was seen in root RGR for this level of
salinity. A higher level of CaCl,, had a negative effect on
shoot growth, whereas root growth was greatly enhanced
by the addition of 15 mM CaCl, to the nutrient solution,
for both stressed and unstressed ‘Salyboro’ roots.

Table 1. Analysis of variance of selected growth responses of the sweet potato cultivar ‘Salyboro’

CaCl, concentrations

0.18
0.7 | SALYBORO
2 016 +
&
g 0.15 |
> 0.14 +
S 013
© ©, 299 mM CaCl, 0 mMNaCl
b ®,15.0 mM CaCl;, mMNaCl
|2 0.12 1 D,Z.QQEMCZCI:,EOmaMNaCI
011 u, 15.0 mM CaCl;, 140 mMNaCl
0.1 - . 1 1
0 7 14 21 28
Time (days)

Fig. 1. Effect of salinity and low and high CaCl2 concentrations
on the total dry matter production of the sweet potato
cultivar ‘Salyboro’ over time

Shoot growth was significantly reduced in the presence
of 140 mM NaCl in the growth medium, which suggests
I. batatas to be a moderately salt sensitive plant species.
The adverse effects of salinity were also seen in the shoot
by a reduction in the number of leaves, shoot height and
number of nodes. In two separate studies, Benzioni et
al. (1992) found that the number of nodal segments
produced by in vivo grown whole plants of the salt
tolerant jojoba (Simmondsia chinensis) were reduced
by increasing NaCl levels, and when compared with in
vitro grown nodal segments (Mills and Benzioni, 1992),
the whole plants responded to salinity in a similar

under increasing NaCl and

Significance levels

Source df Plant Shoot Shoot ~ Number Root Root Root  Total dry
height fresh dry of length fresh dry weight
(cm)  weight(g) weight(g)  roots (cm)  weight (g) weight(g) ()
Time 4 Hok ek Bk ks sk NS % ek
Salinity 1 NS ok NS NS ok NS NS NS
Calcium 1 NS NS NS NS NS NS NS NS
Sal x Cal 1 * * NS NS * wE NS NS
Sal x Time 4 NS Aok NS Ak NS NS NS NS
Cal x Time 4 NS NS NS NS o NS NS NS
SalxCalx T 4 NS NS NS NS NS w NS NS
Std Err 0.65 0.07 0.009 0.80 1.41 0.03 0.003 0.01

Error mean square has 60 df. *, #* and *%** denote statistical significance at 5, 1 and 0.1% level of confidence,

respectively. NS indicates differences between means not significant.
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Table 2. Relative growth rates of shoot, root and whole plant and shoot to root ratios of the cultivar ‘Salyboro’ treated with

CaCl2 and two NaCl concentrations for 28 days

Relative growth rates (g g dry wt day™)

Treatment

Ca/Na (mM) Shoots Roots Whole plant Shoot : root ratio
2.99/0 0.018=%=0.005 0.015%=0.006 0.017%=0.005 3.55*F1.6
2.99/140 0.017%0.007 0.003%x0.008 0.014%x0.005 1.70x1.7
15.0/0 0.015%0.007 0.028%x0.011 0.016%0.007 2.775%0.2
15.0/140 0.010%0.007 0.021x0.011 0.011%x0.004 1.20%0.1

(mean £ SE, n = 4)

manner. Potluri and Prasad (1993) also reported a
decrease in shoot height and number of nodes with
increasing salt concentration in in vitro grown potato
cultivars exposed to NaCl concentrations ranging from
0.2 - 1.0%. Lower salt concentrations (0.29% NaCl)
increased shoot height in most of the cultivars under
study, and while it was greatly reduced at concentrations
higher than 0.2% NaCl, plants were able to sustain
relatively high dry weights. This, according to the
researchers, was due to the accumulation of both organic

and inorganic ions.

It is evident from the data presented here that by
increasing the CaCl, supply to the nutrient solution, the
harmful effects of NaCl on growth of the sweet potato
are moderated. When the CaCl, content of the nutrient
solution was 2.99 mM, Ca’* deficiency symptoms were
observed in both roots and shoots of the salt stressed
sweet potato cultivar ‘Salyboro’. These symptoms were
similar to those observed in Ca?* deficient salt stressed
corn reported by Maas and Grieve (1987). An increase
of 15.0 mM CaCl, in the nutrient solution alleviated the
deficiency symptoms. Growth of the sweet potato plants
was reduced by NaCl salinity; NaCl-induced changes in
growth and ionic concentrations of plants have been
reported by Cachorro et al. (1993), who concluded that
growth inhibition by the salt sensitive Phaseolus vulgaris
could be due to the toxic effects of ions which this plant
species may not be able to partition effectively.

The responses of relative growth rate (RGR) of the sweet
potato appeared to be slightly reduced by salinity during
the earlier stages, with a larger reduction occurring in
the later stages of growth. The decrease in RGR as a
result of NaCl salinity was higher in the low CaCl,
treatments, indicating the existence of an effect of salinity
and CaCl, concentration on growth. Other studies (Akita
and Cabt_lslay, 1990; He and Cramer, 1993) have also

reported a salinity-induced reduction in RGR. There was
a higher dry matter allocation to the sweet potato shoots
than to its roots, as NaCl salinity reduced root growth
more than it did shoot growth. This supports Romero
and Marafién (1996) who found that under salt stress,
annual sweet clover (Melilotus segetalis) allocated more
biomass to leaves, rather than to roots.

The solute contents of leaf and root tissue were analysed
(Table 3) and most of them showed significance for stage
of growth (time). Sodium concentrations increased over
time for the NaCl-stressed plants. There was also a highly
significant effect of Ca’* on leaf Na™ content. Significant
differences were found only for NaCl salinity on leaf
solute concentrations of Ca’*. The concentrations of
Na*, K* and Ca’* in the leaf and root tissue of sweet

potato cultivar ‘Salyboro” are presented in Fig. 2.

The concentrations of Na*, K* and Ca** in the leaf and
root tissue of sweet potato cultivar ‘Salyboro’ are
presented in Fig. 2. Sodium concentrations in the leaf
tissue of NaCl-stressed plants subjected to both low and
high CaCl, were constant between 0 and 7 days, and
then increased steadily from day 7 to the end of the 28
day period. Leaf tissue Na* concentrations remained
fairly constant for unstressed plants. The Na*
concentrations in the root tissue of stressed and
unstressed plants subjected to high CaCl, followed a
similar pattern, fluctuating between 0 and 14 days, and
then rising dramatically from day 21 to day 28.

Accumulation patterns of the K* ion in leaf tissue (Fig.
2) fluctuated in a very similar manner in all treatments.
Leaf tissues experienced a rapid drop in concentration
from day O to day 7, followed by an increase at day 14
which declined at day 21, then increased again at the
end of day 28. Concentrations for each treatment were
not significantly different from one another.
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Table 3. Analysis of variance of solute accumulation in leaf and root tissue of the sweet potato cultivar ‘Salyboro’ under

increasing NaCl and CaCl2 concentrations

Significance levels

Source df Leaf Na* Leaf K* Leaf Ca?* Root Na* Root K* Root Ca’*
Time 1 FOORS R FOORS o o *
Salinity I NS NS * NS NS NS
Calcium 1 sk NS * NS NS sk
Sal x Cal 1 NS NS NS NS NS NS

Sal x Time 4 NS * NS NS NS NS
Cal x Time 4 ok NS NS NS NS NS
SalxCalxT 4 NS NS NS NS NS NS
Std Err 67.80 84.56 14.54 294.90 262.81 36.06

Error mean square has 60 df. *, ** and *#*%* denote statistical significance at 5, 1 and 0.1% level of significance,

respectively. NS indicates differences between means not significant.

2000 ::g
1500 | 150
1000 | 100

400
350
300

LeafK*

lon content (umol g ' dw)

400
350
300
250 |
200 +
150
100
50

Root Ca?*

Time (days)

O, 2.99 mM CaClz, 0 mM NaCl
®, 15.0 mM CaCl,, 0 mM NaCl
O, 2.99 mM CaCl;, 140 mM NaCl
m, 15.0 mM CaCl,, 140 mM NaCl

Fig. 2. Effect of salinity and low and high CaCl2 concentrations on the leaf and root mineral composition of sweet potato

cultivar ‘Salyboro” over time

Weekly measurements of net uptake and transport of
Na*, K" and Ca’* ions were taken during the 28 days of
the experiment (Table 4). Analysis of variance results
(Table 5) showed significant differences over time for
net ion uptake of Na*, K* and Ca** by the whole plant,
net ion transport of K* and Ca’* from root to shoot and
net ion uptake of Na*, K" and Ca’* by the roots.

The pattern of K¥ accumulation followed a similar trend,
irrespective of NaCl or CaCl, treatment. There appeared
to be a slow accumulation of K* during the first 7 days,
followed by a rapid loading of the leaf, stem and root

tissues with K*, with a subsequent decline to lower levels.
Root to shoot transport of K* ions was equally low. The
high uptake of K* into the leaf, stem and root during
the earlier stages of growth seemed to counteract the
negative effects of Na™ uptake into these plant parts, as
total dry matter production was the same for both
stressed and unstressed plants. It was only during the
later stages of growth that differences in salt treatments
became apparent, when stressed plants experienced a
decrease in total dry matter production accompanied

by a decrease in K™ accumulation. Asch et al. (1999)
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Table 4. Relative growth rate, net ion uptake by whole plant, root to shoot net ion transport and net ion uptake by roots of ‘Salyboro’ sweet potato
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Table 5. Analysis of variance of relative growth rate and rates of ion uptake and transport in the sweet potato cultivar

‘Salyboro’ under increasing NaCl and CaCl2 concentrations

Significance levels

Source df  Relative Net Net Net Net Net Net Net Net Net
growth ~ Na* K* Ca*t Na* K* Ca*t Na* K* Ca’*
rate uptake  uptake uptake transport transport transport uptake — uptake uptake
(RGR) M 4)) 4)) (Js) (Js) (Js) by root by root by root
d-J»  (d-J» (J-Js
Time 3 NS g e * NS Hege % * g e
Salinity 1 NS NS NS NS NS NS NS NS NS NS
Calcium 1 NS NS NS NS NS NS NS NS NS NS
Sal x Cal 1 NS NS NS NS NS NS NS NS NS NS
Sal x Time 3 NS NS NS NS NS NS NS NS NS NS
Cal x Time 3 NS NS NS NS NS * NS * NS NS
SalxCalxT 3 NS NS NS NS NS NS NS NS NS NS
Std Err 0.02 198.10  209.40 29.99 115.97 120.30 17.64 186.20 168.64 35.07

Error mean square has 48 df. *, *%* and **%* denote statistical significance at 5, 1 and 0.1% level of significance, respectively.
NS indicates differences between means not significant. ] = rate of net ion uptake by whole plant, Js = net transport from
root to shoot, ] - Js = net uptake by root

Table 6. Rates of net Na*, K* and Ca’* uptake and transport of the sweet potato cultivar ‘Salyboro’ over 28 days of growth in
two CaCl, in the absence of NaCl and at 140 mM NaCl

CaCl, NaCl Net uptake by whole plant (]) Net root to shoot transport (J)
(mM) (mM) (1 mol g’l day’l) (u mol g’l day’l)
Na* K* Ca’* Na* K* Ca’*
2.99 0 110.7 -158.0 12.5 18.5 -137.8 20.3
2.99 140 174.7 -372.9 -13.0 127.6 -317.0 30.4
15.0 0 14.4 -128.7 5.0 48.0 40.6 5.4
15.0 140 295.9 -279.3 17.4 137.7 -210.2 20.2

Negative values indicate a net loss of the ion from the plant

increases in shoot concentration of Nat with time in

various plant species.

This experiment provides further corroboration of the
alleviation of the adverse effects of salinity on I. batatas
by the addition of Ca** to the growing medium
(Richardson etal., 2003). The salt tolerance of the sweet
potato cultivar appears to be associated with its ability
to control rates of Na*, K* and Ca’* ion uptake and
transport in order to maintain ionic adjustments within
the plant tissues during salt stress. Greenway and Thomas
(1965) suggest a relationship between growth rate and
ion concentration, establishing that regulation of ion
concentrations occurs during root to shoot transfer.
Peacock et al. (1993) attributed growth reduction due
to excess salts in the root zone to ionic imbalances within

the plant tissues. There appears to be a salt tolerance
mechanism operating in which, during salt stress, ionic
adjustment within the plant tissues of the sweet potato
cultivar is maintained by controlling the rates of ion
uptake and transport. This study also demonstrated an
influence of relative growth rates of shoots on the Na*
ion concentrations of the leaf tissues.
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