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Introduction

Indian agriculture has been historically explained as a 
gamble with monsoon because agricultural activity in 
most parts of the country depends mainly on monsoon. 
India is heavily dependent on South-West monsoon 
(June-September) for most of its annual rainfall. The 
Kerala state, known as “Gateway of monsoon in India” is 
one of the unique regions in the humid tropical monsoon 
climate which receives high solar radiation and warm 
temperature throughout the year since it is at a short 
distance away from the equator. Unimodal and bimodal 
distribution of rainfall with undulating topography, 
varied soil types and sharp changes in physiography 
(below msl to 2500 m above msl), together with 44 
rivers, many freshwater lakes and estuarine backwaters 
give rise to contrasting ecological units congenial for 
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Abstract

This paper aimed to fit SARIMA model based on Box-Jenkins methodology to the time series data 
corresponds to monthly rainfall in three agro climatic regions viz., Regional Agricultural Research 
Station (RARS) Vellayani, RARS Kumarakom and Cardamom Research Station (CRS), Pampadumpara 
representing different regions of Southern part of Kerala. The empirical model gave a picture of climate 
change scenario happened in both temporal and regional wise. The SARIMA model was fitted to 
monthly rainfall for all the regions Vellayani, Kumarakom, and Pampadumpara using the data for 31 
years from 1991 to 2021. The best identified SARIMA models for rainfall were ARIMA (1, 0, 0) (0, 1, 
1)

12
, ARIMA (0, 0, 0) (0, 1, 1)

12
 and ARIMA (0, 0, 0) (0, 1, 1)

12
. The model parameters were obtained 

by using maximum likelihood method and the best model were selected using Akaike Information 
Criteria (AIC), Bayesian Information Criteria (BIC) and Hannan-quinn coefficient. The adequacy of the 
check of the selected models confirmed that the selected models were free from autocorrelation and 
the residuals are normally distributed.

Keywords: Seasonal Autoregressive Integrated Moving Average, Regional Agricultural Research station, 
Akaike Information Criteria, Bayesian Information Criteria

high biological activity, contribute for its rich biodiversity 
in Kerala. The principal rainy seasons in Kerala are the 
South-west monsoon (June-September) and the North-
East monsoon (October-November). The pre-monsoon 
months (March-May) are characterized by major 
thunderstorm activity in the state and winter months 
(December-January) are marked by low clouding and 
low rainfall season. Time series modeling of weather 
parameters especially rainfall will describethe overall 
variations noticed in the pattern and predict the future 
distributional behavior. 

Materials and Methods

The time series approach used in this study is based on 
ARIMA - Box-Jenkins methodology. ARIMA uses the 
autocorrelation relationship exists in the data set for 
model development and forecasting.
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Stationarity and differencing

Stationary time series data is characterized by its unique 
nature of time independency of its various properties 
like mean, variance. A time series {x

t
} is said to be 

strictly stationary, if the joint probability distribution of 
observations (x

t
,
 
x

t+1
,
 ...

,
 
x

t+n
) is exactly same as the joint 

probability distribution of observations (x
t+     +1

, x
t+     +2

,
 

...
,
 
x

t+       +n
) for every point (t, t + 1, ..., t + n) where h 

is the time space. The process {x
t
} is said to be weakly 

stationary, if it has a constant mean, finite variance and 
its auto-covariance function γ(t,s) depends only on the 
time lag |t−s|. There are many ways in which a time 
series fails to be stationary, and those are said to be non-
stationary time series. Modelling of a non-stationary data 
will have no sense, so data should be stationary before 
fitting a model. By the method of differencing non-
stationary data can be converted to stationary. 

Differencing will stabilize the mean of the time series 
by eliminating or reducing trend and seasonality. 
Differenced series will be the change between 
consecutive observations. Ordinary differencing and 
seasonal differencing are the common ways to eliminate 
non-stationarity in the data. 

First order differenced series: 

y’
t
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t
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t-1

Second order differenced series: 
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t
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Usually, ordinary second order differencing will be 
enough to make the data stationary. Sometimes seasonal 
differencing will also be found necessary to remove 
non-stationarity. This is nothing but difference between 
consecutive observations in the same season denoted as  
y’t

=y
t
−y

t-m
, where m is seasonal term. 

Unit root test

The modern technique used to detect stationarity of the 
time series data is through unit root test. Several unit roots 
tests are available such as Augmented Dickey Fuller test 
(ADF), Kwiatkowski-Phillips-Schmidt-Shin(KPSS) test etc. 
In this study ADF test is used for detecting the stationarity. 

The null hypothesis and the alternative hypothesis for 
ADF test was:

H
0
: Presence of unit root indicating time series data is 

non stationary.

H
1
: Absence of unit root indicating time series data is 

stationary.

The test statistic for ADF test is defined as follows:

DE
t
=

If DE
t 
was found greater than critical value or p-value less 

than 0.05, then H
0 
was rejected.

Autocorrelation and Partial autocorrelation functions 
(ACF and PACF)

The classical method used to determine whether data is 
stationary or not is by analyzing the nature of ACF and 
PACF plots. These plots graphically summarize the strength 
of association betweenobservations in present time with its 
previous period.

Auto correlation is the correlation between observations 
of a variable taken at different time points. Auto 
Correlation Function (ACF) plots are widely for checking 
randomness in a data set. This randomness is ascertained 
by computing auto correlations for data values at varying 
time lags. Partial Auto Correlation Function (PACF) of 
{Z

t
} is a partial correlation coefficient between {Z

t
} and 

{Z
t-k

} by fixing the effect of others. PACF of order k is 
the correlation coefficient between {Z

t
} and a suitable 

linear combination of Z
t
,
 
Z

t-1
,
 .....

,. ACF and PACF plots 
are drawn by considering correlation coefficients on the 
y-axis with number of lags  in the x-axis. 

Autoregressive model (AR Model)

In an autoregressive (AR) Model, each value in a series 
should be a linear function of the preceding value or 
values. In a first-order autoregressive process, only 
the single preceding value is used or in a second-order 
process, the two preceding values are used, and so 
on. These processes are commonly indicated by the 
notation AR(p) or ARIMA(p-0-0), where the number in 
parentheses indicates the order.

AR model of order p can be written as:

y
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Moving average model (MA Model)

In this model, instead of considering past values of forecast 
variables past values of forecast errors are considered in 
the regression equation. In a moving-average process, 
each value is determined by the weighted average of 
the current disturbanceand one or more previous 
disturbances. The order of the moving-average process 
specifies how many previous disturbances are averaged 
into the new value.

MA model of order q can be written as

y
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=c+e
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Non-seasonal ARIMA Model

Combination of AR and MA models along with order 
of integration or difference will form an Autoregressive 
Integrated Moving Average (ARIMA) model. 

The full model will be in the form: 
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Where y’
t
 the differenced series and right-hand side 

contain predictors of lagged values of y
t
 and e

t
 (residual 

term).

The form of ARIMA (p,d,q) can also be written as,

f+(B) (1-B)dZ
t
=q(B)

 
e

t

Where f−Coefficient of non-seasonal AR component

 B−Backshift operator

 q−Coefficient of non-seasonal MA component

This can be notated simply as ARIMA (p, d, q) 

Where p−Order of autoregressive part

 d−Order of integration

 q−Order of moving average part 

Seasonal ARIMA (SARIMA) Model

The SARIMA model is formed by including a seasonal 
component to the ARIMA model. It can be represented 
as ARIMA (p, d, q) (P, D, Q) in which p and q are non-
seasonal autoregressive and moving average parameters, P 
and Q are the seasonal autoregressive and moving average 
parameters, respectively. The two other parameters, 
d and D, are non-seasonal and seasonal differencing 
respectively, used to make the series stationary. 

 The form of ARIMA (p,d,q)×(P,D,Q) has the following 
form,

f
p
(B)F

p 
(Bs)Ñd ÑD

S
Z

t
=q

q
(B)Q

Q
(Bs)e

t

Where f−Coefficient of seasonal AR component

 F−Coefficient of seasonal MA component

To obtain the ARIMA model by the Box-Jenkins 
methodology, there are three steps that must be considered 
which are identification, parameter estimation, and 
diagnostic checking (goodness of fit test). 

Identification

In this step, three integers p, d, and q and P, D, Q 
representing respectively the number of autoregressive 
orders, the number of differencing orders, and the 
number of moving-average orders of both non-seasonal 
and seasonal part of ARIMA model are determined. 
Stationarity check of the data set reveals the nature of 
order of integration included in the model. It can be 
done by using classical methods involving autocorrelation 
functions (ACF) and partial autocorrelation functions 
(PACF) plots and modern methods such as Augmented 
Duckey Fuller test (ADF) (Saha et al., 2016).

Estimation of parameters

After estimating order of the model next step is to 
determine the parameters such as c, f

1
,...., f

p
, q

1
, ..., q

q
  

etc. The parameters can be estimated using a function 

minimization algorithm, either minimize the sums of 
squared residuals or maximize the likelihood (probability) 
of the observed series. To compute the sums of squares 
(SS) of the residuals, the approximate maximum 
likelihood method (MLE) is chosen, as this method is 
the fastest and can be used for very large data sets. For 
ARIMA model, MLE was similar to least square estimate 
which is based on minimizing the function ST

t
=

1
e2

t
. 

Since the ARIMA model is much complicated to estimate 
the regression models, certain model selection criteria 
were used by most of the software including open-source 
software Gretl, which is used in this study. 

Information criteria 

Model selection was done based on Akaike’s Information 
Criteria (AIC), Bayesian Information Criteria (BIC) and 
Hannan-Quinn Criteria (HQIC). 

AIC is useful in selecting predictors for regression as 
well as determining order of an ARIMA model. It can 
be written as

AIC=−2 log(L)+2 (P+Q+K+1)

Where, L was the maximum likelihood function and  
last term represent the number of estimated  
parameters, in which K=0 if c=0 and K=1 if c≠0. 
(Akaike, 1974).

For ARIMA model, corrected AIC denoted as AIC
C 

can 
be written as:

AIC
C
 = ][2 )1kn

2n( LlnK −−−

Where, n was the number of observations

BIC or Schwarz information criteria (SIC)

SIC=ln (n)K−2ln(L) (Schwartz, 1978)

HQIC=2In[ln(n)]K−2ln(L) (Hannan and Quin, 1979)

Validation of the model

Once the preferred model is identified, standardized 
residuals should be analyzed. According to our model 
assumption, observations are normally distributed and thus, 
the standardized residuals should be standard normally 
distributed. Now, if a model was found to be not good 
enough, then errors will no longer remain uncorrelated 
and like a time series depends on its past values, the errors 
will remain uncorrelated as well. So, model validation can 
be made by analyzing the nature of residuals in terms of 
autocorrelation and normality.

Residual Analysis

When a model has been identified as best fit to a time 
series, it is inevitable to check that whether the selected 
model provides an adequate representation of the data. 
This is usually done by looking at the residuals. For a 
good model, residuals are stationary and uncorrelated, 
and a model validation usually consists of plotting the 
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Fig.1. ACF and PACF plot for rainfall at Vellayani, 
Thiruvananthapuram, Kerala

residuals in various methods. Another way is by detecting 
whether residuals follow a normal distribution, and if so, 
the model selected will be good.

Ljung-Box Test

The test was used to determine whether the autocorrelations 
for the errors or residuals are non-zero (Modified Box-
Pierce statistic) (Sallehuddin et al., 2007; Kane and Yusof, 
2013)

The null and alternate hypothesis of the test are given 
below:

H
0
: The errors are uncorrelated

H
1
: The errors are correlated.

The test statistic was:

∑
=

−+=
m

1k
kn

Y
m

k
2

2)n(nQ

Where n was the number of observations, Y
k
 was 

the autocorrelation between residuals with lag k and 
m total number of lags. The statistic Q

m
 had a finite 

sample distribution that was much closer to that of x2 
(m-p-q). The procedure was to reject the null hypothesis 
of uncorrelated residuals, if the computed value of Q

m
 

is larger than the chi-square table value for a specified 
significance level.

Normality plot of residuals

Graphical tool used for comparing data set with normal 
distribution. From the nature of histogram one can easily 
identify whether it is normally distributed or not.

Results and Discussion

Box-Jenkins (1970) methodology was applied to model 
the rainfall data and it includes identification of the model, 
estimation of the model parameters and validation of the 
model (Hipel et al., 1977). The time series data should 
be stationary which means that it should have aconstant 
mean, variance, and covariance which dependent only 
on time before fitting ARIMA models. The most used 
method to transform non-stationary data to stationary 
is differencing the data points, which replaces each value 
in the series by the difference between two consecutive 
values as tth and t-1th periods for a first order differenced 
series.

Identification of the model

Stationarity was checkedusing unit root test (ADF test) 
and examining the autocorrelation function (ACE) and 
partial autocorrelation function (PACF) to identify the 
potential models. Null hypothesis for the ADF test was 
the presence of unit rootindicating non-stationary and 
the alternate hypothesis as no unit root indicating a 
stationary time series. ADF test results of rainfall data 
in all the three stations were found to be in rejection 

zone indicating stationarity and the order of integration 
is zero. Based on the significant value of the ADF test the 
order for integration for both non seasonal and seasonal 
component wasdetected and it isshown in Table 1.

Table 1. Order of integration based on unit root test 
result of rain fall data

Stations ADF test
P-value

Regular 
difference 

order

Seasonal 
difference 

order
Vellayani -9.89 0 1

Kumarakom -13.63 0 1
Pampadumpara -13.28 0 1

Classical methods based on ACF and PACF were also 
performed to identify AR and MA components for both 
non-seasonal and seasonal parts. Fig.1, 2 and 3 shows 

Fig. 3. ACF and PACF plot for rainfall at Pampadumpara, 
Idukki, Kerala

Fig. 2. ACF and PACF plot for rainfall at Kumarakom, 
Kottayam, Kerala
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the correlogram corresponds to the rainfall data of the 
stations with lag length of 25 in X-axis and autocorrelation 
values in the Y-axis. 

The seasonal autocorrelation relationship was observed 
and quite prominent from ACF and PACF and the 
gradual decay observed in the plot again indicate 
stationarity nature of data set. Based on the nature of 
the correlogram and the result of the unit root test we 
can choose a temporary model for rainfall and the model 
could be ARIMA (p, 0, q) (P, 1, Q).

Estimation of Parameters of the model

Even though the order of integration was identified the 
parameters and the best ARIMA model was identified 
by trial-and-error method based on the value of AIC, 
BIC and Hannan Quinncriteria. The different models 
estimated with different criteria usingthe open-sources 
of tware Gretl are shown in Table 2, 3 and 4. 

For Vellayani, the model having p=1, d=0, q=0, P=0, 
D=1, Q=1has lower values for AIC, BIC and Hanann 

Table 2. ARIMA models for rainfall at Vellayani

ARIMA
Model

Coefficient P-value AIC BIC
Hannan
Quinn

(001) (111) phi-1 
theta-1 
theta-1

0.07 
0.12 
-0.89

0.33 
0.02** 

3.39e-052***

4037.84 4060.74 4046.97

(003)(010) theta-1 
theta-2 
theta-3 
phi-1 
phi-2
phi-1

0.12 
0.12 
-0.03 
-0.44
-0.70
0.06

0.02** 
0.02** 

0.53 
 

0.003***0.00 
07***0.43

4185.58 4208.49 4194.71

(202)(111) theta-1 
theta-2 
theta-1

0.56
0.803460
-0.893021

2.49e-06*** 
1.44e-05***
1.37e-05***

4037.90 4072.25 4051.60

(100)(011) phi-1 
theta-1

0.14
-0.85

0.009***7.1  
5e-06***

4035.98 4055.07 4043.59

Table 3. ARIMA models for rainfall at Kumarakom

ARIMA
Model

Coeffic
ient

P-value AIC BIC
Hannan
Quinn

(000)(112) theta-1
theta-2 
phi- 1

−1.01
0.01 
0.07

0.0009***
0.81 
0.19

4172.91 4191.99 4180.52

(100)(111)  phi-1
theta-1 
phi-1 
phi-1

−0.02
−0.99 
−0.66 

−0.005

0.77
0.003*** 

0.0004*** 
0.93

4173.18 4196.08 4182.31

(101)(111) theta-1
theta-1

0.74
−1.00

7.75e-06***
5.66e-09***

4173.22 4199.95 4183.88

(100)(110) phi-1
phi-1

0.12
−0.55

0.02**
1.20e-32***

4250.59 4269.68 4258.19

(000)(011) theta-1 -1 2.14*10-12 4170.97 4186.23 4177.05
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Quinn criterion which revealed the best model for rainfall 
was ARIMA (1, 0, 0) (0, 1, 1)12. The model having p=0, 
d=0, q=0, P=0, D=1, Q=1 has lower values for AIC, 
BIC and Hanann Quinn criterion for Kumarakom data 
which revealed that the best model was ARIMA (0, 0, 
0) (0, 1, 1)12. Pampadumpara model having p=0, d=0, 
q=0, P=0, D=1, Q=1 has lower AIC, BIC and Hanann 
Quinn criterion and so the best model for rainfall was 
ARIMA (0, 0, 0) (0, 1, 1)

12
. All the coefficients of the 

estimatedmodels were highly significantsince p-values 
were less than 0.05. Fig. 4, 5 and 6 shows the plot for 
actual and fitted values,  where there dlinere presents 
the actual values and blue line represent the fitted values  

and from the graph it is obvious that fitted and actual 
were closer.

Model validation

The best fitted model for rainfall in Vellayani was found 
to be ARIMA (1,0,  0) (0, 1,1)

12
.

The functional form of the model is:

y
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Here f
1
=0.14 and Q
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The best fit model for rainfall in Kumarakom was ARIMA 
(0, 0, 0) (0, 1, 1)

12
. The functional form of the model is:

y
t
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t-12
=Q

1
e

t-12
+e

t
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t
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t
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Z
t
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1
 e
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+e
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Here, Q
1
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Z
t 
=-e

t-12
+ e

t

Table 4. ARIMA Models for Rainfall in Pampadumpara

ARIMA Model Coefficient P-value AIC BIC
Hannan
Quinn

(001)(112)
phi-1 

theta-1 

theta-1 

theta-2

0.708
0.046
−1.66
0.711

0.0002***
0.3788

5.76e-022***
1.82e-06***

3994.501 4021.221 4005.152

(101)(012) phi-1 

theta-1

theta-1
theta-2

0.669
−0.608
−0.907
0.029

0.0084***
0.0239**

4.61e-048***
0.6301

3996.582 4023.302 4007.233

(100)(110) phi-1  

phi-2

0.080
−0.499

0.1404
1.93e-024***

4088.251 4107.336 4095.859

(000)(011) theta-1 0.88 1.46*10-144*** 3993.09 3999.17 4008.36

Fig. 4. Actual versusfitte dplot for rainfall in Vellayani

Fig. 5.  Actual versus fitted plot for rainfall in Kumrakom

Fig. 6. Actual versus fitted plot for rainfall in Pampadumpara
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The best fit model for rainfall in Pampadumpara was 
ARIMA (0, 0, 0) (0, 1, 1)

12
. The functional form of the 

model is:

y
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t
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+e

t

Two methods are commonly used to test the adequacy 
of the selected model one method is by checking the 
autocorrelation of the residuals using Ljung-Box Q test 
(Box et al., 1995) and secondis by checking the normality 
of the residuals. It has been found to measure the over all 
adequacy of the chosen model by examining a quantity 
Q known as L jung-Box statistic (Yurekli et al., 2005; 
Sallehuddin et al., 2007), which is a function of auto 
correlations of residuals and its approximate distribution 
was Chi-square. If Ljung-Box statistic value is found non-
significant then residuals are uncorrelated and hence  
the model selected was good enough for the prediction. 
The estimated Ljung-box test statistic of rainfall at three 
stations are shown in Table 5, result indicated that the 
residuals are not correlated. Fig. 7 displays the normality 
plot of residuals for rainfall and it clearly shows that 
residuals are normally distributed.

Tab. 5. Result of Ljung-Box test

Station Ljung-box test statistics p value

Vellayani 8.08 0.62

Kumarakom 7.57 0.757

Pampadumpara 9.74 0.55

Conclusions

The SARIMA model was fitted to monthly rainfall for all 
the regions Vellayani, Kumarakom, and Pampadumpara 
using the monthly data for the period from 1991 to 
2019. The model parameters were obtained by using 
maximum likelihood method and the best model were 
selected using Akaike Information Criteria (AIC), 
Bayesian Information Criteria (BIC) and Hannan-quinn 
coefficient. ARIMA (1, 0, 0)×(0, 1, 1)

12   
was found best 

fit for rainfall for Vellayani, ARIMA (0, 0, 0)×(0, 1, 1)
12 

for Kumarakom and Pampadumpara. The adequacy of 
the check of the selected models confirmed that the 
selected models were free from autocorrelation and the 
residuals are normal.
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