Genetic Diversity of Phytophthora colocasiae Causing Taro Leaf Blight: Analysis Using Start Codon Targeted (SCoT) Polymorphism

Authors

  • Vishnu Sukumari Nath Division of crop protection Central Tuber Crops Research Institute
  • Vinayaka Mahabaleswar Hegde Division of crop protection Central Plantation Crops Research Institute
  • Muthulekshmi Lajapathy Jeeva Division of crop protection Central Tuber Crops Research Institute
  • Raj Shekar Misra Regional centre, Central Tuber Crops Research Institute
  • Syamala Swayamvaran Veena Division of crop protection Central Tuber Crops Research Institute
  • Mithun Raj Division of crop protection Central Tuber Crops Research Institute
  • Sree Sankar Dharveekaran Nair Division of crop protection Central Tuber Crops Research Institute

Keywords:

Taro, Phytophthora colocasiae, Leaf blight, SCoT marker, Genetic diversity, disease management

Abstract

The Oomycetous fungus Phytophthora colocasiae that causes taro leaf blight is one of the most devastating diseases of taro and is widely distributed in India. Cultural and molecular techniques were employed for assessing the genetic variability among 30 isolates of P. colocasiae obtained from different geographical origins of India. Cultural characters like pathogenicity assay, mating type and metalaxyl sensitivity showed variation among isolates. Eight Start Codon Targeted Polymorphism (SCoT) markers produced 121 reproducible fragments with 100% polymorphism. The average value of the number of observed alleles, the number of effective alleles, mean Nei’s genetic diversity, and Shannon’s information index were 2.00 ± 0.00, 1.58 ± 0.30, 0.34 ± 0.13, and 0.51 ± 0.16, respectively. Analysis of molecular variance (AMOVA) showed that 89 % of the diversity was present within population of P. colocasiae. Dendrograms based on the molecular data using the unweighted pair group method with arithmetic mean (UPGMA) classified the P. colocasiae isolates into two major clusters. Cophenetic correlation coefficient between dendrogram and original similarity matrix were significant for SCoT marker (r = 0.904). The results of this study displayed a high level of genetic variation among the isolates irrespective of the geographical origin. The possible mechanisms and implications of this genetic variation are discussed.

References

References

Abu-El Samen, F.M., Secor, G.A. and Gudmestad, N.C. 2003. Genetic variation among asexual progeny of Phytophthora infestans detected with RAPD and AFLP markers. Plant Pathol., 52: 314.325.

Baskarathevan, J., Jaspers, M.V., Jones, E.E., Cruickshank, R.H. and Ridgway, H.J. 2012. Genetic and pathogenic diversity of Neofusicoccum parvum in New Zealand vineyards. Fungal biol., 116: 276-288

Cohen, Y. and Coffey, M.D. 1986. Systemic fungicides and the control of Oomycetes. Annu Rev Phytopathol., 24: 311-338

Collard, B.C.Y. and Mackill, D.J. 2009. Start Codon Targeted (SCOT) polymorphism: A simple novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol., 27, 86.93.

Costamilan, L.M., Clebsch, C.C., Soares, R.M., Seixas, C.D.S., Godoy, C.V. and Dorrance, A.E. 2012. Pathogenic diversity of Phytophthora sojae pathotypes from Brazil. European J Plant Pathol., DOI 10.1007/s10658-012-0128-9.

Demeke, T., Adams, R.P. and Chibbar. R. 1992. Potential use of random amplified polymorphic DNA (RAPD): A case study in Brassica. Theor Appl Genet., 84, 990 . 994

Excoffier, L., Smouse, P.E. and Quattro J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics., 131:479.491

Fry, W. E. and Goodwin S. B. 1995. Recent migrations of Phytophthora infestans. Pages 89-95 in: Phytophthora infestans 150. L. J. Dowley., E., Bannon, L. R. Cooke., T. Keane. and E. O’Sullivan, eds. Boole Press, Ltd., Dublin.

Gollifer, D.E. and Brown, J.F. 1974. Phytophthora leaf blight of Colocasia esculenta in the British Solomon Islands. Papua New Guinea Agricultural J., 25: 6-11

Goodwin, S.B. 1997. The population genetics of Phytophthora. Phytopathol., 97: 462.473.

Granke, L.L., Quesada-Ocampo, L.M., and Hausbeck, M. K. (2011). Variation in Phenotypic Characteristics of Phytophthora capsici isolates from a Worldwide Collection. Plant Dis., 95(9): 1080-1088.

Jackson, G.V.H., Gollifer, D.E. and Newhook, F.J. 1980. Studies on the taro leaf blight fungus Phytophthora colocasiae in the Solomon Islands: control by fungicides and spacing. Ann Appl Biol., 96: 1.10.

Ko, W.H. 1979. Mating type distribution of Phytophthora colocasiae in the island of Hawaii. Mycologia., 71: 434-437.

Lebot, V. and Aradhya, K.M. 1991. Isozyme variation in taro (Colocasia esculenta (L.)Schott) from Asia and Oceania. Euphytica., 56: 55.66.

Lebot, V., Herail, C., Gunua, T., Pardales, J., Prana, M., Thongjiem, M. and Viet, N. 2003. Isozyme and RAPD variation among Phytophthora colocasiae isolates from South East Asia and the Pacific. Plant Pathol., 52: 303.313.

Lynch, M. and Milligan, B.G. 1994. Analysis of population genetic structure with RAPD markers. Mol Ecol., 3: 91 . 100.

Mahto, N.B., Gurung, S., Nepal, A. and Adhikari, T.B. 2012. Morphological, pathological and genetic variations among isolates of Cochliobolus sativus from Nepal. European J Plant Pathol., 133: 405-417.

Mantel, N. 1967. The detection of disease clustering and generalized regression approach. Cancer Res., 27: 209.220.

Milgroom, M.G., Fary, W.E. 1997. Contribution of population genetics to plant disease epidemiology and management. Adv Bot Res., 24: 1 . 30.

Mishra, A.K., Sharma, K. and Misra, R. S. 2010. Isozyme and PCR-based genotyping of epidemic Phytophthora colocasiae associated with taro leaf blight. Arch Phytopathol Plant Prot., 43(14): 1367-1380.

Misra, R.S. 1999. Management of Phytophthora leaf blight disease of taro. In: Balagopalan C, Nair TVR, Sunderesan S, Premkumat T, Lakshmi KR (eds) Tropical tuber crops: food security and nutrition. Oxford and IBH, New Delhi, India, pp 460.469

Misra, R.S. and Chowdhury, S.R. 1997. Phytophthora Leaf Blight Disease of Taro, CTCRI Technical Bulletin Series 21, Central Tuber Crops Research Institute and St Joseph Press, Trivandrum., pp 32

Misra, R.S., Sharma, K., Mishra, A.K. 2008 Phytophthora leaf blight of Taro (Colocasia esculenta) . a review. Asian Austral J Plants Sci Biotechnol., 2: 55.63.

Misra, R.S., Sriram, S. 2002 Medicinal value and export potential of tropical tuber crops. In: Govil, J.N., J. Pandey, B.G. Shivkumar and V.K. Singh, (Eds.), Series Recent Progress in Medicinal Plants, Crop Improvement, Production Technology and Commerce, SCI Tech Pub, USA, Vol. 5., pp: 376-386

Misra, R. S., Mishra, A. K., Sharma, K., Jeeva, M. L. and Hegde, V. 2011. Characterisation of Phytophthora colocasiae isolates associated with leaf blight of taro in India. Arch Phytopathol Plant Prot., 44:(6) 581-591.

Nath, V.S., Senthil, M., Hegde, V.M., Jeeva, M.L., Misra, R.S., Veena, S.S. and Raj, M. 2012a. Evaluation of fungicides on Indian isolates of Phytophthora colocasiae causing leaf blight of taro. Arch Phytopathol Plant Prot http://dx.doi.org/10.1080/03235408.2012.749688

Nath., V.S., Sankar, M.S., Hegde, V.M., Jeeva, M.L., Misra, R.S., and Veena, S.S. 2013b. Molecular evidence supports hypervariability in Phytophthora colocasiae associated with leaf blight of taro. European J Plant Pathol., 136:483.494.

Nei, M., and Li, W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of National Academy of Science, USA, 76: 5269-5273.

Raciborski, M. 1900. Parasitische Algen und Pilze, Java’s (Java’s Parasitic Algae and Fungi). I. Batavia. (Cited in Waterhouse1970a under P. colocasiae).

Rohlf, F. J. 1993. Contributions to morphometrics: Relative warp analysis and an example of its application to mosquito wings. In Marcus et al. (Eds.), Museo Nacional de Ciencias Naturales (pp. 131.159). Madrid.

Schluter, P.M., and Harris, S.A. 2006. Analysis of multilocus fingerprinting data sets containing missing data. Mol Ecol Notes., 6: 569-572.

Sharma, K., Mishra, A.K., and Misra, R.S. 2008. The genetic structure of C. esculenta: a comparison of RAPD and isozyme markers. Plant Biotechnol Reports., 2:191.198.

Silvar, C., Merino, F., and Diaz, J. 2006. Diversity of Phytophthora capsici in Northwest Spain: Analysis of Virulence, Metalaxyl Response, and Molecular Characterization. Plant Dis., 90: 1135-1142.

Tyson, J.L. and Fullerton, R.A. 2007. Mating types of Phytophthora colocasiae from the Pacific region, India and South-east Asia. Australasian Plant Disease Notes., 2: 111.112.

Van de peer, Y. and Dewachter, R. 1994. Treecon for Windows—A software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci., 10: 569.570.

Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T.V., Hornes, M., Frijters, A., Pot, J., Kupier, JPM. and Zabeau, M. 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acid Res., 23:4407-4414.

Williams, J.G.K., Kubelic, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531 . 6535.

Yeh, F.C., Boyle, T., Yang, R., Ye, Z., and Xiyan, J.M. 1997. Microsoft window-based freeware for population genetic analysis (POPGENE version 1.31). University of Alberta and Centre for International Forestry Research, Edmonton, Canada.

Downloads

Published

2015-01-01

How to Cite

Nath, V. S., Hegde, V. M., Jeeva, M. L., Misra, R. S., Veena, S. S., Raj, M., & Nair, S. S. D. (2015). Genetic Diversity of Phytophthora colocasiae Causing Taro Leaf Blight: Analysis Using Start Codon Targeted (SCoT) Polymorphism. JOURNAL OF ROOT CROPS, 39(2), 168–177. Retrieved from https://journal.isrc.in/index.php/jrc/article/view/76

Issue

Section

Research Articles